{ "id": "0808.0308", "version": "v3", "published": "2008-08-03T10:25:18.000Z", "updated": "2011-01-25T06:41:32.000Z", "title": "Notes on periodic elements of Garside groups", "authors": [ "Eon-Kyung Lee", "Sang-Jin Lee" ], "comment": "The contents of this 8-page paper have been subsumed into the 27-page paper, \"Periodic elements in Garside groups\" (arXiv:1004.5308)", "categories": [ "math.GT", "math.GR" ], "abstract": "Let $G$ be a Garside group with Garside element $\\Delta$. An element $g$ in $G$ is said to be \\emph{periodic} if some power of $g$ lies in the cyclic group generated by $\\Delta$. This paper shows the following. (i) The periodicity of an element does not depend on the choice of a particular Garside structure if and only if the center of $G$ is cyclic. (ii) If $g^k=\\Delta^{ka}$ for some nonzero integer $k$, then $g$ is conjugate to $\\Delta^a$. (iii) Every finite subgroup of the quotient group $G/<\\Delta^m>$ is cyclic, where $\\Delta^m$ is the minimal positive central power of $\\Delta$.", "revisions": [ { "version": "v3", "updated": "2011-01-25T06:41:32.000Z" } ], "analyses": { "subjects": [ "20F36", "20F10" ], "keywords": [ "garside group", "periodic elements", "minimal positive central power", "garside element", "cyclic group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0808.0308L" } } }