{ "id": "0807.4811", "version": "v1", "published": "2008-07-30T09:17:59.000Z", "updated": "2008-07-30T09:17:59.000Z", "title": "Deforming the Lie Superalgebra $\\mathcal{K}(1)$-Modules Of Symbols", "authors": [ "Ammar Faouzi", "Kamoun Kaouthar" ], "categories": [ "math-ph", "math.MP" ], "abstract": "We study non-trivial deformations of the natural action of the Lie superalgebra $mathcalK(1)$ of contact vector fields on the (1,1)-dimensional superspace $mathbbR^{1|1}$ of th espace of symbols. We calculate obstructions for integrability of infinitesimal multi-parameter deformation and determine the complete commutative algebra corresponding to the miniversal deformation in the sense of A. Fialowski. Besides, we compute the first even differential cohomology space $mathrmH^1_{mathrm{diff}}(cK(1);widetilde{cD}_{lambda,mu})$ of the Lie superalgebra $mathcalK(1)$ of contact vector fields on the (1,1)-dimensional superspace $mathbbR^{1|1}$ with coefficients in the superspace $widetilde{mathcalD}_{lambda,mu}$ of linear differential operators from the superspace of weighted densities $\\fF_{\\lamda}$ to $\\fF_{\\mu}$. (To appear in Journal of Generalized Lie Theory and Applications)", "revisions": [ { "version": "v1", "updated": "2008-07-30T09:17:59.000Z" } ], "analyses": { "keywords": [ "lie superalgebra", "contact vector fields", "superspace", "linear differential operators", "infinitesimal multi-parameter deformation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.4811F" } } }