{ "id": "0807.4430", "version": "v1", "published": "2008-07-28T12:31:18.000Z", "updated": "2008-07-28T12:31:18.000Z", "title": "Linearly recurrent subshifts have a finite number of non-periodic subshift factors", "authors": [ "Fabien Durand" ], "journal": "Ergodic Theory and Dynamical Systems 20 (2000) 1061-1078", "categories": [ "math.DS" ], "abstract": "A minimal subshift $(X,T)$ is linearly recurrent if there exists a constant $K$ so that for each clopen set $U$ generated by a finite word $u$ the return time to $U$, with respect to $T$, is bounded by $K|u|$. We prove that given a linearly recurrent subshift $(X,T)$ the set of its non-periodic subshift factors is finite up to isomorphism. We also give a constructive characterization of these subshifts.", "revisions": [ { "version": "v1", "updated": "2008-07-28T12:31:18.000Z" } ], "analyses": { "subjects": [ "37B10" ], "keywords": [ "non-periodic subshift factors", "linearly recurrent subshift", "finite number", "finite word", "return time" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.4430D" } } }