{ "id": "0807.4415", "version": "v2", "published": "2008-07-28T11:39:11.000Z", "updated": "2010-02-23T13:03:12.000Z", "title": "Viscosity solutions for systems of parabolic variational inequalities", "authors": [ "Lucian Maticiuc", "Etienne Pardoux", "Aurel Răşcanu", "Adrian Zălinescu" ], "comment": "Published in at http://dx.doi.org/10.3150/09-BEJ204 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)", "journal": "Bernoulli 2010, Vol. 16, No. 1, 258-273", "doi": "10.3150/09-BEJ204", "categories": [ "math.DS", "math.AP" ], "abstract": "In this paper, we first define the notion of viscosity solution for the following system of partial differential equations involving a subdifferential operator:\\[\\{[c]{l}\\dfrac{\\partial u}{\\partial t}(t,x)+\\mathcal{L}_tu(t,x)+f(t,x,u(t,x))\\in\\partial\\phi (u(t,x)),\\quad t\\in[0,T),x\\in\\mathbb{R}^d, u(T,x)=h(x),\\quad x\\in\\mathbb{R}^d,\\] where $\\partial\\phi$ is the subdifferential operator of the proper convex lower semicontinuous function $\\phi:\\mathbb{R}^k\\to (-\\infty,+\\infty]$ and $\\mathcal{L}_t$ is a second differential operator given by $\\mathcal{L}_tv_i(x)={1/2}\\operatorname {Tr}[\\sigma(t,x)\\sigma^*(t,x)\\mathrm{D}^2v_i(x)]+< b(t,x),\\nabla v_i(x)>$, $i\\in\\bar{1,k}$. We prove the uniqueness of the viscosity solution and then, via a stochastic approach, prove the existence of a viscosity solution $u:[0,T]\\times\\mathbb{R}^d\\to\\mathbb{R}^k$ of the above parabolic variational inequality.", "revisions": [ { "version": "v2", "updated": "2010-02-23T13:03:12.000Z" } ], "analyses": { "keywords": [ "parabolic variational inequality", "viscosity solution", "proper convex lower semicontinuous function", "second differential operator", "partial differential equations" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.4415M" } } }