{ "id": "0807.4278", "version": "v3", "published": "2008-07-27T07:27:41.000Z", "updated": "2012-07-20T13:06:08.000Z", "title": "The $Λ$-coalescent speed of coming down from infinity", "authors": [ "Julien Berestycki", "Nathanaël Berestycki", "Vlada Limic" ], "comment": "Published in at http://dx.doi.org/10.1214/09-AOP475 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)", "journal": "Annals of Probability 2010, Vol. 38, No. 1, 207-233", "doi": "10.1214/09-AOP475", "categories": [ "math.PR" ], "abstract": "Consider a $\\Lambda$-coalescent that comes down from infinity (meaning that it starts from a configuration containing infinitely many blocks at time 0, yet it has a finite number $N_t$ of blocks at any positive time $t>0$). We exhibit a deterministic function $v:(0,\\infty)\\to(0,\\infty)$ such that $N_t/v(t)\\to1$, almost surely, and in $L^p$ for any $p\\geq1$, as $t\\to0$. Our approach relies on a novel martingale technique.", "revisions": [ { "version": "v3", "updated": "2012-07-20T13:06:08.000Z" } ], "analyses": { "keywords": [ "coalescent", "novel martingale technique", "deterministic function", "approach relies", "finite number" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.4278B" } } }