{ "id": "0807.4020", "version": "v1", "published": "2008-07-25T08:11:35.000Z", "updated": "2008-07-25T08:11:35.000Z", "title": "Global $L^{p}$ estimates for degenerate Ornstein-Uhlenbeck operators", "authors": [ "M. Bramanti", "G. Cupini", "E. Lanconelli", "E. Priola" ], "categories": [ "math.AP" ], "abstract": "We consider a class of degenerate Ornstein-Uhlenbeck operators in $\\mathbb{R}^{N}$, of the kind \\[ \\mathcal{A}\\equiv\\sum_{i,j=1}^{p_{0}}a_{ij}\\partial_{x_{i}x_{j}}^{2} +\\sum_{i,j=1}^{N}b_{ij}x_{i}\\partial_{x_{j}}% \\] where $(a_{ij}) ,(b_{ij}) $ are constant matrices, $(a_{ij}) $ is symmetric positive definite on $\\mathbb{R} ^{p_{0}}$ ($p_{0}\\leq N$), and $(b_{ij}) $ is such that $\\mathcal{A}$ is hypoelliptic. For this class of operators we prove global $L^{p}$ estimates ($1