{ "id": "0807.3974", "version": "v3", "published": "2008-07-24T21:06:59.000Z", "updated": "2008-12-15T17:50:31.000Z", "title": "Representation theory of Yang-Mills algebras", "authors": [ "Estanislao Herscovich", "Andrea Solotar" ], "comment": "24 pages, new versions of Proposition 2.6 and Corollary 2.8, one reference added and one updated", "categories": [ "math.RT", "math-ph", "math.MP" ], "abstract": "The aim of this article is to describe families or representations of the Yang-Mills algebras YM(n) (where n>1) defined by Connes and Dubois-Violette. We first describe irreducible finite dimensional representations. Next, we provide families of infinite dimensional representations of YM(n), big enough to separate points of the algebra. In order to prove this result, we use that all Weyl algebras Ar(k) are epimorphic images of YM(n).", "revisions": [ { "version": "v3", "updated": "2008-12-15T17:50:31.000Z" } ], "analyses": { "subjects": [ "13N10", "16S32", "17B56", "70S15" ], "keywords": [ "representation theory", "irreducible finite dimensional representations", "infinite dimensional representations", "yang-mills algebras ym", "weyl algebras ar" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.3974H" } } }