{ "id": "0807.3406", "version": "v1", "published": "2008-07-22T07:25:31.000Z", "updated": "2008-07-22T07:25:31.000Z", "title": "A generalization of Cobham's Theorem", "authors": [ "Fabien Durand" ], "journal": "Theory of Computing Systems 31 (1998) 169-185", "categories": [ "math.CO" ], "abstract": "If a non-periodic sequence $X$ is the image by a morphism of a fixed point of both a primitive substitution $\\sigma$ and a primitive substitution $\\tau$, then the dominant eigenvalues of the matrices of $\\sigma$ and of $\\tau$ are multiplicatively dependent. This is the way we propose to generalize Cobham's Theorem.", "revisions": [ { "version": "v1", "updated": "2008-07-22T07:25:31.000Z" } ], "analyses": { "subjects": [ "11B85" ], "keywords": [ "generalization", "primitive substitution", "non-periodic sequence", "generalize cobhams theorem", "dominant eigenvalues" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.3406D" } } }