{ "id": "0807.3373", "version": "v1", "published": "2008-07-21T23:32:06.000Z", "updated": "2008-07-21T23:32:06.000Z", "title": "Statistical Mechanics of Steiner trees", "authors": [ "M. Bayati", "C. Borgs", "A. Braunstein", "J. Chayes", "A. Ramezanpour", "R. Zecchina" ], "journal": "Phys. Rev. Lett. 101, 037208 (2008)", "doi": "10.1103/PhysRevLett.101.037208", "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn" ], "abstract": "The Minimum Weight Steiner Tree (MST) is an important combinatorial optimization problem over networks that has applications in a wide range of fields. Here we discuss a general technique to translate the imposed global connectivity constrain into many local ones that can be analyzed with cavity equation techniques. This approach leads to a new optimization algorithm for MST and allows to analyze the statistical mechanics properties of MST on random graphs of various types.", "revisions": [ { "version": "v1", "updated": "2008-07-21T23:32:06.000Z" } ], "analyses": { "subjects": [ "64.60.aq", "05.20.-y", "87.18.Vf", "89.70.Eg" ], "keywords": [ "statistical mechanics", "minimum weight steiner tree", "important combinatorial optimization problem", "imposed global connectivity constrain", "cavity equation techniques" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review Letters", "year": 2008, "month": "Jul", "volume": 101, "number": 3, "pages": "037208" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008PhRvL.101c7208B" } } }