{ "id": "0807.3268", "version": "v1", "published": "2008-07-21T14:05:38.000Z", "updated": "2008-07-21T14:05:38.000Z", "title": "Convergence of symmetric Markov chains on $\\Z^d$", "authors": [ "R. F. Bass", "T. Kumagai", "T. Uemura" ], "categories": [ "math.PR" ], "abstract": "For each $n$ let $Y^n_t$ be a continuous time symmetric Markov chain with state space $n^{-1} \\Z^d$. A condition in terms of the conductances is given for the convergence of the $Y^n_t$ to a symmetric Markov process $Y_t$ on $\\R^d$. We have weak convergence of $\\{Y^n_t: t\\leq t_0\\}$ for every $t_0$ and every starting point. The limit process $Y$ has a continuous part and may also have jumps.", "revisions": [ { "version": "v1", "updated": "2008-07-21T14:05:38.000Z" } ], "analyses": { "subjects": [ "60J10" ], "keywords": [ "continuous time symmetric markov chain", "symmetric markov process", "state space", "weak convergence", "limit process" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.3268B" } } }