{ "id": "0807.3102", "version": "v2", "published": "2008-07-19T15:10:31.000Z", "updated": "2009-07-22T12:58:50.000Z", "title": "The continuity of the inversion and the structure of maximal subgroups in countably compact topological semigroups", "authors": [ "Oleg V. Gutik", "Dušan Pagon", "Dušan Repovš" ], "journal": "Acta Math. Hungarica 124:3 (2009), 201-214", "doi": "10.1007/s10474-009-8144-8", "categories": [ "math.GN", "math.GR" ], "abstract": "In this paper we search for conditions on a countably compact (pseudo-compact) topological semigroup under which: (i) each maximal subgroup $H(e)$ in $S$ is a (closed) topological subgroup in $S$; (ii) the Clifford part $H(S)$(i.e. the union of all maximal subgroups) of the semigroup $S$ is a closed subset in $S$; (iii) the inversion $\\operatorname{inv}\\colon H(S)\\to H(S)$ is continuous; and (iv) the projection $\\pi\\colon H(S)\\to E(S)$, $\\pi\\colon x\\longmapsto xx^{-1}$, onto the subset of idempotents $E(S)$ of $S$, is continuous.", "revisions": [ { "version": "v2", "updated": "2009-07-22T12:58:50.000Z" } ], "analyses": { "subjects": [ "22A15", "54D55", "54H10", "20M10" ], "keywords": [ "countably compact topological semigroups", "maximal subgroup", "continuity", "clifford part", "idempotents" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.3102G" } } }