{ "id": "0807.2815", "version": "v2", "published": "2008-07-17T16:03:19.000Z", "updated": "2009-06-22T21:44:15.000Z", "title": "Permutation classes of every growth rate above 2.48188", "authors": [ "Vincent Vatter" ], "comment": "Several minor changes, as well as a change in title. To appear in Mathematika", "doi": "10.1112/S0025579309000503", "categories": [ "math.CO" ], "abstract": "We prove that there are permutation classes (hereditary properties of permutations) of every growth rate (Stanley-Wilf limit) at least \\lambda \\approx 2.48187, the unique real root of x^5-2x^4-2x^2-2x-1, thereby establishing a conjecture of Albert and Linton.", "revisions": [ { "version": "v2", "updated": "2009-06-22T21:44:15.000Z" } ], "analyses": { "keywords": [ "growth rate", "permutation classes", "unique real root", "hereditary properties", "stanley-wilf limit" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.2815V" } } }