{ "id": "0807.2621", "version": "v4", "published": "2008-07-16T18:03:16.000Z", "updated": "2011-08-12T18:25:18.000Z", "title": "Decay of covariances, uniqueness of ergodic component and scaling limit for a class of \\nablaφsystems with non-convex potential", "authors": [ "Codina Cotar", "Jean-Dominique Deuschel" ], "comment": "41 pages, 5 figures", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We consider a gradient interface model on the lattice with interaction potential which is a nonconvex perturbation of a convex potential. Using a technique which decouples the neighboring vertices sites into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for \\nabla\\phi-Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.", "revisions": [ { "version": "v4", "updated": "2011-08-12T18:25:18.000Z" } ], "analyses": { "subjects": [ "60K35", "82B24", "35J15" ], "keywords": [ "ergodic component", "non-convex potential", "scaling limit", "uniqueness", "covariances" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.2621C" } } }