{ "id": "0807.2231", "version": "v1", "published": "2008-07-14T19:16:04.000Z", "updated": "2008-07-14T19:16:04.000Z", "title": "Hausdorff dimension for ergodic measures of interval exchange transformations", "authors": [ "Jon Chaika" ], "comment": "7 pages", "journal": "Journal of Modern Dynamics, July 2008 455-462", "categories": [ "math.DS" ], "abstract": "I show that there exist minimal interval exchange transformations with an ergodic measure whose Hausdorff dimension is arbitrarily small, even 0. I will also show that in particular cases one can bound the Hausdorff dimension between $\\frac 1 {2r+4}$ and $\\frac 1 r$ for any r greater than 1.", "revisions": [ { "version": "v1", "updated": "2008-07-14T19:16:04.000Z" } ], "analyses": { "keywords": [ "hausdorff dimension", "ergodic measure", "minimal interval exchange transformations", "arbitrarily small" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.2231C" } } }