{ "id": "0807.2193", "version": "v1", "published": "2008-07-14T16:30:27.000Z", "updated": "2008-07-14T16:30:27.000Z", "title": "Well-posedness for the generalized Benjamin-Ono equations with arbitrary large initial data in the critical space", "authors": [ "Stéphane Vento" ], "categories": [ "math.AP" ], "abstract": "We prove that the generalized Benjamin-Ono equations $\\partial_tu+\\mathcal{H}\\partial_x^2u\\pm u^k\\partial_xu=0$, $k\\geq 4$ are locally well-posed in the scaling invariant spaces $\\dot{H}^{s_k}(\\R)$ where $s_k=1/2-1/k$. Our results also hold in the non-homogeneous spaces $H^{s_k}(\\R)$. In the case $k=3$, local well-posedness is obtained in $H^{s}(\\R)$, $s>1/3$.", "revisions": [ { "version": "v1", "updated": "2008-07-14T16:30:27.000Z" } ], "analyses": { "subjects": [ "35Q55", "35B30", "76B03", "76B55" ], "keywords": [ "arbitrary large initial data", "generalized benjamin-ono equations", "critical space", "scaling invariant spaces", "local well-posedness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.2193V" } } }