{ "id": "0807.2027", "version": "v3", "published": "2008-07-14T19:30:06.000Z", "updated": "2009-06-08T15:34:35.000Z", "title": "Growth in SL_3(Z/pZ)", "authors": [ "H. A. Helfgott" ], "comment": "88 pages; Theorem 1.1 is new", "categories": [ "math.GR", "math.NT" ], "abstract": "Let G=SL_3(Z/pZ), p a prime. Let A be a set of generators of G. Then A grows under the group operation. To be precise: denote by |S| the number of elements of a finite set S. Assume |A| < |G|^{1-\\epsilon} for some \\epsilon>0. Then |A\\cdot A\\cdot A|>|A|^{1+\\delta}, where \\delta>0 depends only on \\epsilon. We also study subsets A\\subset G that do not generate G. Other results on growth and generation follow.", "revisions": [ { "version": "v3", "updated": "2009-06-08T15:34:35.000Z" } ], "analyses": { "subjects": [ "05C25", "20G40", "20D60", "20F65", "11B75" ], "keywords": [ "group operation", "finite set", "study subsets", "generation", "generators" ], "note": { "typesetting": "TeX", "pages": 88, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.2027H" } } }