{ "id": "0807.1539", "version": "v2", "published": "2008-07-09T20:32:13.000Z", "updated": "2008-11-11T21:24:42.000Z", "title": "On convergence of solutions to equilibria for quasilinear parabolic problems", "authors": [ "Jan Pruess", "Gieri Simonett", "Rico Zacher" ], "comment": "33 pages. To appear in Journal of Differential Equations. Contains a more general result in Theorem 6.1 than the first version", "doi": "10.1016/j.jde.2008.10.034", "categories": [ "math.AP", "math.CA" ], "abstract": "We show convergence of solutions to equilibria for quasilinear parabolic evolution equations in situations where the set of equilibria is non-discrete, but forms a finite-dimensional $C^1$-manifold which is normally hyperbolic. Our results do not depend on the presence of an appropriate Lyapunov functional as in the \\L ojasiewicz-Simon approach, but are of local nature.", "revisions": [ { "version": "v2", "updated": "2008-11-11T21:24:42.000Z" } ], "analyses": { "subjects": [ "34G20", "35K55", "35B35", "37D10", "35R35" ], "keywords": [ "quasilinear parabolic problems", "equilibria", "convergence", "quasilinear parabolic evolution equations", "appropriate lyapunov functional" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Differential Equations", "year": 2009, "volume": 246, "number": 10, "pages": 3902 }, "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009JDE...246.3902P" } } }