{ "id": "0807.0891", "version": "v1", "published": "2008-07-06T07:44:08.000Z", "updated": "2008-07-06T07:44:08.000Z", "title": "The Coin Exchange Problem and the Structure of Cube Tilings", "authors": [ "Andrzej P. Kisielewicz", "Krzysztof Przesławski" ], "comment": "3 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "Let k_1,...,k_d be positive integers, and D be a subset of [k_1]x...x[k_d], whose complement can be decomposed into disjoint sets of the form {x_1}x...x{x_{s-1}}x[k_s]x{x_{s+1}}x...x{x_d}. We conjecture that the number of elements of D can be represented as a linear combination of the numbers k_1,..., k_d with non-negative integer coefficients. A connexion of this conjecture with the structure of periodical cube tilings is revealed.", "revisions": [ { "version": "v1", "updated": "2008-07-06T07:44:08.000Z" } ], "analyses": { "subjects": [ "05A18", "52C22", "05B45", "11H99" ], "keywords": [ "coin exchange problem", "non-negative integer coefficients", "linear combination", "disjoint sets", "periodical cube tilings" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.0891K" } } }