{ "id": "0807.0502", "version": "v1", "published": "2008-07-03T08:08:14.000Z", "updated": "2008-07-03T08:08:14.000Z", "title": "Faltings heights of CM cycles and derivatives of L-functions", "authors": [ "Jan Hendrik Bruinier", "Tonghai Yang" ], "comment": "50 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "We study the Faltings height pairing of arithmetic Heegner divisors and CM cycles on Shimura varieties associated to orthogonal groups. We compute the Archimedian contribution to the height pairing and derive a conjecture relating the total pairing to the central derivative of a Rankin L-function. We prove the conjecture in certain cases where the Shimura variety has dimension 0, 1, or 2. In particular, we obtain a new proof of the Gross-Zagier formula.", "revisions": [ { "version": "v1", "updated": "2008-07-03T08:08:14.000Z" } ], "analyses": { "subjects": [ "11G18", "14G40", "11F67" ], "keywords": [ "cm cycles", "faltings height", "shimura variety", "arithmetic heegner divisors", "derivative" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.0502H" } } }