{ "id": "0807.0313", "version": "v1", "published": "2008-07-02T10:07:13.000Z", "updated": "2008-07-02T10:07:13.000Z", "title": "The symmetries of the 2phi1", "authors": [ "F. J. van de Bult" ], "comment": "14 pages", "categories": [ "math.CO" ], "abstract": "We show that the only symmetries of the 2phi1 within a large class of possible transformations are Heine's transformations. The class of transformations considered consists of equation of the form 2phi1(a,b;c;q,z)= f(a,b,c,z) 2phi1(L(a,b,c,q,z)), where f is a q-hypergeometric term and L a linear operator on the logarithms of the parameters. We moreover prove some results on q-difference equations satisfied by 2phi1, which are used to prove the main result.", "revisions": [ { "version": "v1", "updated": "2008-07-02T10:07:13.000Z" } ], "analyses": { "subjects": [ "33D15", "05A19" ], "keywords": [ "symmetries", "large class", "heines transformations", "linear operator", "main result" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0807.0313V" } } }