{ "id": "0806.4152", "version": "v2", "published": "2008-06-25T17:00:02.000Z", "updated": "2008-07-07T19:19:53.000Z", "title": "Dimension of automorphisms with fixed degree for polynomial algebras", "authors": [ "Vesselin Drensky", "Jie-Tai Yu" ], "comment": "10 pages", "categories": [ "math.AG", "math.AC" ], "abstract": "Let $K[x,y]$ be the polynomial algebra in two variables over an algebraically closed field $K$. We generalize to the case of any characteristic the result of Furter that over a field of characteristic zero the set of automorphisms $(f,g)$ of $K[x,y]$ such that $\\max\\{\\text{deg}(f),\\text{deg}(g)\\}=n\\geq 2$ is constructible with dimension $n+6$. The same result holds for the automorphisms of the free associative algebra $K< x,y>$. We have also obtained analogues for free algebras with two generators in Nielsen -- Schreier varieties of algebras.", "revisions": [ { "version": "v2", "updated": "2008-07-07T19:19:53.000Z" } ], "analyses": { "subjects": [ "13B25", "16S10", "17A50" ], "keywords": [ "polynomial algebra", "fixed degree", "automorphisms", "schreier varieties", "characteristic zero" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0806.4152D" } } }