{ "id": "0806.3056", "version": "v3", "published": "2008-06-18T18:12:54.000Z", "updated": "2009-02-26T19:24:22.000Z", "title": "Syzygies of the secant variety of a curve", "authors": [ "Jessica Sidman", "Peter Vermeire" ], "comment": "24 pages; minor revision and reorganization", "journal": "Algebra Number Theory 3 (2009), no. 4, 445-465", "doi": "10.2140/ant.2009.3.445", "categories": [ "math.AG", "math.AC" ], "abstract": "We show that the secant variety of a linearly normal smooth curve of degree at least 2g+3 is arithmetically Cohen-Macaulay, and we use this information to study the graded Betti numbers of the secant variety.", "revisions": [ { "version": "v3", "updated": "2009-02-26T19:24:22.000Z" } ], "analyses": { "subjects": [ "13D02", "14F05", "14H99", "14N05" ], "keywords": [ "secant variety", "linearly normal smooth curve", "graded betti numbers", "arithmetically cohen-macaulay", "information" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0806.3056S" } } }