{ "id": "0806.2917", "version": "v1", "published": "2008-06-18T08:11:49.000Z", "updated": "2008-06-18T08:11:49.000Z", "title": "Kostant's problem and parabolic subgroups", "authors": [ "Johan Kåhrström" ], "categories": [ "math.RT" ], "abstract": "Let $\\frak g$ be a finite dimensional complex semi-simple Lie algebra with Weyl group $W$ and simple reflections $S$. For $I\\subseteq S$ let $\\frak g_I$ be the corresponding semi-simple subalgebra of $\\frak g$. Denote by $W_I$ the Weyl group of $\\frak g_I$ and let $w_o$ and $w^I_o$ be the longest elements of $W$ and $W_I$, respectively. In this paper we show that the answer to Kostant's problem, i.e. whether the universal enveloping algebra surjects onto the space of all ad-finite linear transformations of a given module, is the same for the simple highest weight $\\frak g_I$-module $L_I(x)$ of highest weight $x\\cdot 0$, $x\\in W_I$, as the answer for the simple highest weight $\\frak g$-module $L(x w^I_o w_o)$ of highest weight $(x w^I_o w_o)\\cdot 0$. We also give a new description of the unique quasi-simple quotient of the Verma module $\\Delta(e)$ with the same annihilator as $L(y)$, $y\\in W$.", "revisions": [ { "version": "v1", "updated": "2008-06-18T08:11:49.000Z" } ], "analyses": { "keywords": [ "kostants problem", "parabolic subgroups", "simple highest weight", "finite dimensional complex semi-simple lie", "dimensional complex semi-simple lie algebra" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0806.2917K" } } }