{ "id": "0806.2114", "version": "v1", "published": "2008-06-12T16:41:24.000Z", "updated": "2008-06-12T16:41:24.000Z", "title": "On the excedance sets of colored permutations", "authors": [ "Eli Bagno", "David Garber", "Robert Shwartz" ], "comment": "9 pages, no figures; submitted", "categories": [ "math.CO", "math.GR" ], "abstract": "We define the excedence set and the excedance word on $G_{r,n}$, generalizing a work of Ehrenborg and Steingrimsson and use the inclusion-exclusion principle to calculate the number of colored permutations having a prescribed excedance word. We show some symmetric properties as Log concavity and unimodality of a specific sequence of excedance words.", "revisions": [ { "version": "v1", "updated": "2008-06-12T16:41:24.000Z" } ], "analyses": { "subjects": [ "05E15" ], "keywords": [ "colored permutations", "excedance sets", "inclusion-exclusion principle", "specific sequence", "log concavity" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0806.2114B" } } }