{ "id": "0806.1815", "version": "v1", "published": "2008-06-11T08:51:44.000Z", "updated": "2008-06-11T08:51:44.000Z", "title": "Quotients of Banach spaces with the Daugavet property", "authors": [ "Vladimir Kadets", "Varvara Shepelska", "Dirk Werner" ], "comment": "15 pages", "journal": "Bull. Pol. Acad. Sci. 56, no.2, 131-147 (2008)", "categories": [ "math.FA" ], "abstract": "We consider a general concept of Daugavet property with respect to a norming subspace. This concept covers both the usual Daugavet property and its weak$^*$ analogue. We introduce and study analogues for narrow operators and rich subspaces in this general setting and apply the results to show that a quotient of $L_1[0,1]$ over an $\\ell_1$-subspace can fail the Daugavet property. The latter answers a question posed to us by A. Pelczynski in the negative.", "revisions": [ { "version": "v1", "updated": "2008-06-11T08:51:44.000Z" } ], "analyses": { "subjects": [ "46B04", "46B25", "47B38" ], "keywords": [ "banach spaces", "usual daugavet property", "study analogues", "concept covers", "general concept" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0806.1815K" } } }