{ "id": "0806.1373", "version": "v3", "published": "2008-06-09T05:59:33.000Z", "updated": "2009-08-06T07:32:18.000Z", "title": "Global well-posedness for the $L^2$ critical Hartree equation on $\\bbr^n$, $n\\ge 3$", "authors": [ "Myeongju Chae", "Soonsik Kwon" ], "comment": "Some minor correction on Error estimate made", "categories": [ "math.AP" ], "abstract": "We consider the initial value problem for the L^2-critical defocusing Hartree equation in R^n, n \\ge 3. We show that the problem is globally well posed in H^s(R^n) when 1>s> \\frac{2(n-2)}{3n-4}$. We use the \"I-method\" combined with a local in time Morawetz estimate for the smoothed out solution.", "revisions": [ { "version": "v3", "updated": "2009-08-06T07:32:18.000Z" } ], "analyses": { "subjects": [ "35Q55" ], "keywords": [ "critical hartree equation", "global well-posedness", "initial value problem", "time morawetz estimate", "defocusing hartree equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0806.1373C" } } }