{ "id": "0806.1247", "version": "v1", "published": "2008-06-06T22:48:18.000Z", "updated": "2008-06-06T22:48:18.000Z", "title": "O-segments on topological measure spaces", "authors": [ "Mohammad Javaheri" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "Let $X$ be a topological space and $\\mu$ be a nonatomic finite measure on a $\\sigma$-algebra $\\Sigma$ containing the Borel $\\sigma$-algebra of $X$. We say $\\mu$ is weakly outer regular, if for every $A \\in \\Sigma$ and $\\epsilon>0$, there exists an open set $O$ such that $\\mu(A \\backslash O)=0$ and $\\mu(O \\backslash A)<\\epsilon$. The main result of this paper is to show that if $f,g \\in L^1(X,\\Sigma, \\mu)$ with $\\int_X f d\\mu=\\int_X g d\\mu=1$, then there exists an increasing family of open sets $u(t)$, $t\\in [0,1]$, such that $u(0)=\\emptyset$, $u(1)=X$, and $\\int_{u(t)} f d\\mu=\\int_{u(t)} g d\\mu=t$ for all $t\\in [0,1]$. We also study a similar problem for a finite collection of integrable functions on general finite and $\\sigma$-finite nonatomic measure spaces.", "revisions": [ { "version": "v1", "updated": "2008-06-06T22:48:18.000Z" } ], "analyses": { "subjects": [ "28A25", "46G10" ], "keywords": [ "topological measure spaces", "open set", "finite nonatomic measure spaces", "o-segments", "nonatomic finite measure" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0806.1247J" } } }