{ "id": "0806.0640", "version": "v1", "published": "2008-06-03T21:33:12.000Z", "updated": "2008-06-03T21:33:12.000Z", "title": "On the Sum-Product Problem on Elliptic Curves", "authors": [ "Omran Ahmadi", "Igor Shparlinski" ], "comment": "13 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $\\E$ be an ordinary elliptic curve over a finite field $\\F_{q}$ of $q$ elements and $x(Q)$ denote the $x$-coordinate of a point $Q = (x(Q),y(Q))$ on $\\E$. Given an $\\F_q$-rational point $P$ of order $T$, we show that for any subsets $\\cA, \\cB$ of the unit group of the residue ring modulo $T$, at least one of the sets $$ \\{x(aP) + x(bP) : a \\in \\cA, b \\in \\cB\\} \\quad\\text{and}\\quad \\{x(abP) : a \\in \\cA, b \\in \\cB\\} $$ is large. This question is motivated by a series of recent results on the sum-product problem over finite fields and other algebraic structures.", "revisions": [ { "version": "v1", "updated": "2008-06-03T21:33:12.000Z" } ], "analyses": { "subjects": [ "11G05", "11L07", "11T23" ], "keywords": [ "sum-product problem", "finite field", "ordinary elliptic curve", "rational point", "residue ring modulo" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0806.0640A" } } }