{ "id": "0806.0424", "version": "v1", "published": "2008-06-03T02:55:17.000Z", "updated": "2008-06-03T02:55:17.000Z", "title": "Some Enumerations for Parking Functions", "authors": [ "Po-Yi Huang", "Jun Ma", "Jean Yeh" ], "categories": [ "math.CO" ], "abstract": "In this paper, let $\\mathcal{P}_{n,n+k;\\leq n+k}$ (resp. $\\mathcal{P}_{n;\\leq s}$) denote the set of parking functions $\\alpha=(a_1,...,a_n)$ of length $n$ with $n+k$ (respe. $n$)parking spaces satisfying $1\\leq a_i\\leq n+k$ (resp. $1\\leq a_i\\leq s$) for all $i$. Let $p_{n,n+k;\\leq n+k}=|\\mathcal{P}_{n,n+k;\\leq n+k}|$ and $p_{n;\\leq s}=|\\mathcal{P}_{n;\\leq s}|$. Let $\\mathcal{P}_{n;\\leq s}^l$ denote the set of parking functions $\\alpha=(a_1,...,a_n)\\in\\mathcal{P}_{n;\\leq s}$ such that $a_1=l$ and $p_{n;\\leq s}^l=|\\mathcal{P}_{n;\\leq s}^l|$. We derive some formulas and recurrence relations for the sequences $p_{n,n+k;\\leq n+k}$, $p_{n;\\leq s}$ and $p_{n;\\leq s}^l$ and give the generating functions for these sequences. We also study the asymptotic behavior for these sequences.", "revisions": [ { "version": "v1", "updated": "2008-06-03T02:55:17.000Z" } ], "analyses": { "keywords": [ "parking functions", "enumerations", "recurrence relations", "asymptotic behavior", "parking spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0806.0424H" } } }