{ "id": "0805.4740", "version": "v4", "published": "2008-05-30T16:16:21.000Z", "updated": "2008-07-17T05:06:08.000Z", "title": "Lattice Homomorphisms between Sobolev Spaces", "authors": [ "Markus Biegert" ], "comment": "25 pages", "categories": [ "math.AP", "math.FA" ], "abstract": "We show that every vector lattice homomorphism $T$ between Sobolev spaces can be represented by a composition and a multiplication, that is, $T$ is of the form $Tu(x)=u(h(x))g(x)$ for quasi every/almost every $x$ and all $u$.", "revisions": [ { "version": "v4", "updated": "2008-07-17T05:06:08.000Z" } ], "analyses": { "subjects": [ "47B38", "47B65" ], "keywords": [ "sobolev spaces", "vector lattice homomorphism", "quasi every/almost" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0805.4740B" } } }