{ "id": "0805.2535", "version": "v1", "published": "2008-05-16T13:54:54.000Z", "updated": "2008-05-16T13:54:54.000Z", "title": "Symmetry of large solutions of nonlinear elliptic equations in a ball", "authors": [ "Alessio Porretta", "Laurent Veron" ], "journal": "J Funct Analysis 236 (2006) 581-591", "doi": "10.1016/j.jfa.2006.03.010", "categories": [ "math.AP" ], "abstract": "Let $g$ be a locally Lipschitz continuous real valued function which satisfies the Keller-Osserman condition and is convex at infinity, then any large solution of $-\\Delta u+g(u)=0$ in a ball is radially symmetric.", "revisions": [ { "version": "v1", "updated": "2008-05-16T13:54:54.000Z" } ], "analyses": { "subjects": [ "35J60" ], "keywords": [ "nonlinear elliptic equations", "large solution", "lipschitz continuous real valued function", "keller-osserman condition" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0805.2535P" } } }