{ "id": "0805.2362", "version": "v1", "published": "2008-05-15T17:25:03.000Z", "updated": "2008-05-15T17:25:03.000Z", "title": "An optimization problem on the sphere", "authors": [ "Andreas Maurer" ], "categories": [ "cs.LG", "cs.CG" ], "abstract": "We prove existence and uniqueness of the minimizer for the average geodesic distance to the points of a geodesically convex set on the sphere. This implies a corresponding existence and uniqueness result for an optimal algorithm for halfspace learning, when data and target functions are drawn from the uniform distribution.", "revisions": [ { "version": "v1", "updated": "2008-05-15T17:25:03.000Z" } ], "analyses": { "keywords": [ "optimization problem", "average geodesic distance", "uniform distribution", "target functions", "optimal algorithm" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0805.2362M" } } }