{ "id": "0805.2031", "version": "v1", "published": "2008-05-14T11:21:27.000Z", "updated": "2008-05-14T11:21:27.000Z", "title": "On filling families of finite subsets of the Cantor set", "authors": [ "Pandelis Dodos", "Vassilis Kanellopoulos" ], "comment": "14 pages, no figures. Mathematical Proceedings of the Cambridge Philosophical Society (to appear)", "journal": "Mathematical Proceedings of the Cambridge Phil. Society 145 (2008), 165-175", "categories": [ "math.LO", "math.CO" ], "abstract": "Let $\\ee>0$ and $\\fff$ be a family of finite subsets of the Cantor set $\\ccc$. Following D. H. Fremlin, we say that $\\fff$ is $\\ee$-filling over $\\ccc$ if $\\fff$ is hereditary and for every $F\\subseteq\\ccc$ finite there exists $G\\subseteq F$ such that $G\\in\\fff$ and $|G|\\geq\\ee |F|$. We show that if $\\fff$ is $\\ee$-filling over $\\ccc$ and $C$-measurable in $[\\ccc]^{<\\omega}$, then for every $P\\subseteq\\ccc$ perfect there exists $Q\\subseteq P$ perfect with $[Q]^{<\\omega}\\subseteq\\fff$. A similar result for weaker versions of density is also obtained.", "revisions": [ { "version": "v1", "updated": "2008-05-14T11:21:27.000Z" } ], "analyses": { "subjects": [ "03E15", "05D10", "46B15" ], "keywords": [ "finite subsets", "cantor set", "filling families", "similar result" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0805.2031D" } } }