{ "id": "0805.1985", "version": "v1", "published": "2008-05-14T07:14:38.000Z", "updated": "2008-05-14T07:14:38.000Z", "title": "On the symmetry of arithmetical functions in almost all short intervals,IV", "authors": [ "Giovanni Coppola" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "We study the arithmetic (real) function, with f 'essentially bounded'. In particular, we obtain non-trivial bounds, through f 'correlations', for the 'Selberg integral' and the 'symmetry integral' of f in almost all short intervals $[x-h,x+h]$, $N\\le x\\le 2N$, beyond the 'classical' level, up to a very high level of distribution (for $h$ not too small). This time we go beyond Large Sieve inequality. Precisely, our method applies Weil bound for Kloosterman sums.", "revisions": [ { "version": "v1", "updated": "2008-05-14T07:14:38.000Z" } ], "analyses": { "subjects": [ "11N37", "11N25" ], "keywords": [ "short intervals", "arithmetical functions", "method applies weil bound", "large sieve inequality", "high level" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0805.1985C" } } }