{ "id": "0805.1761", "version": "v1", "published": "2008-05-12T23:48:12.000Z", "updated": "2008-05-12T23:48:12.000Z", "title": "Almost localization and almost reducibility", "authors": [ "Artur Avila", "Svetlana Jitomirskaya" ], "comment": "30 pages, to appear in Journal of the European Mathematical Society", "categories": [ "math.DS", "math-ph", "math.MP" ], "abstract": "We develop a quantitative version of Aubry duality and use it to obtain several sharp estimates for the dynamics of Schr\\\"odinger cocycles associated to a non-perturbatively small analytic potential and Diophantine frequency. In particular, we establish the full version of Eliasson's reducibility theory in this regime (our approach actually leads to improvements even in the perturbative regime: we are able to show, for all energies, ``almost reducibility'' in some band of analyticity). We also prove 1/2-H\\\"older continuity of the integrated density of states. For the almost Mathieu operator, our results hold through the entire regime of sub-critical coupling and imply also the dry version of the Ten Martini Problem for the concerned parameters.", "revisions": [ { "version": "v1", "updated": "2008-05-12T23:48:12.000Z" } ], "analyses": { "keywords": [ "localization", "eliassons reducibility theory", "non-perturbatively small analytic potential", "martini problem", "aubry duality" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0805.1761A" } } }