{ "id": "0805.1554", "version": "v1", "published": "2008-05-11T18:23:14.000Z", "updated": "2008-05-11T18:23:14.000Z", "title": "A finiteness property for preperiodic points of Chebyshev polynomials", "authors": [ "Su-Ion Ih", "Thomas J. Tucker" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "Let K be a number field with algebraic closure K-bar, let S be a finite set of places of K containing the archimedean places, and let f be a Chebyshev polynomial. We prove that if a in K-bar is not preperiodic, then there are only finitely many preperiodic points b in K-bar which are S-integral with respect to a.", "revisions": [ { "version": "v1", "updated": "2008-05-11T18:23:14.000Z" } ], "analyses": { "subjects": [ "11G05", "11G35", "14G05" ], "keywords": [ "preperiodic points", "chebyshev polynomial", "finiteness property", "algebraic closure k-bar", "finite set" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0805.1554I" } } }