{ "id": "0805.1006", "version": "v1", "published": "2008-05-07T15:59:09.000Z", "updated": "2008-05-07T15:59:09.000Z", "title": "Admissible unitary completions of locally $Q_p$-rational representations of $GL_2(F)$", "authors": [ "Vytautas Paskunas" ], "comment": "44 pages", "categories": [ "math.RT", "math.NT" ], "abstract": "Let $F$ be a finite extension of $Q_p$, $p>2$. We construct admissible unitary completions of certain representations of $GL_2(F)$ on $L$-vector spaces, where $L$ is a finite extension of $F$. When $F=Q_p$ using the results of Berger, Breuil and Colmez we obtain some results about lifting 2-dimensional mod $p$ representations of the absolute Galois group of $Q_p$ to crystabelline representations with given Hodge-Tate weights.", "revisions": [ { "version": "v1", "updated": "2008-05-07T15:59:09.000Z" } ], "analyses": { "keywords": [ "rational representations", "finite extension", "construct admissible unitary completions", "absolute galois group", "hodge-tate weights" ], "note": { "typesetting": "TeX", "pages": 44, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0805.1006P" } } }