{ "id": "0804.4613", "version": "v1", "published": "2008-04-29T14:03:29.000Z", "updated": "2008-04-29T14:03:29.000Z", "title": "Gabor (Super)Frames with Hermite Functions", "authors": [ "Karlheinz Gröchenig", "Yurii Lyubarskii" ], "journal": "Math. Ann. 345(2) (2009), 267 -- 286", "categories": [ "math.FA", "math.CV" ], "abstract": "We investigate vector-valued Gabor frames (sometimes called Gabor superframes) based on Hermite functions $H_n$. Let $h= (H_0, H_1, ..., H_n)$ be the vector of the first $n+1$ Hermite functions. We give a complete characterization of all lattices $\\Lambda \\subseteq \\bR ^2$ such that the Gabor system $\\{e^{2\\pi i \\lambda_2 t} \\boh (t-\\lambda_1): \\lambda = (\\lambda_1, \\lambda_2) \\in \\Lambda \\}$ is a frame for $L^2 (\\bR, \\bC ^{n+1})$. As a corollary we obtain sufficient conditions for a single Hermite function to generate a Gabor frame and a new estimate for the lower frame bound. The main tools are growth estimates for the Weierstrass $\\sigma $-function, a new type of interpolation problem for entire functions on the Bargmann-Fock space, and structural results about vector-valued Gabor frames.", "revisions": [ { "version": "v1", "updated": "2008-04-29T14:03:29.000Z" } ], "analyses": { "subjects": [ "42C15", "33C90", "94A12" ], "keywords": [ "vector-valued gabor frames", "single hermite function", "lower frame bound", "gabor superframes", "sufficient conditions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.4613G" } } }