{ "id": "0804.4153", "version": "v1", "published": "2008-04-25T17:33:02.000Z", "updated": "2008-04-25T17:33:02.000Z", "title": "The Other Group of as Galois Extension", "authors": [ "Lex E. Renner" ], "categories": [ "math.NT" ], "abstract": "Let $k\\subseteq K$ be a finite Galois extension of fields with Galois group $G$. Let $\\mathscr{G}$ be the automorphism $k$-group scheme of $K$. We construct a canonical $k$-subgroup scheme $\\underline{G}\\subset\\mathscr{G}$ with the property that $Spec_k(K)$ is a $k$-torsor for $\\underline{G}$. $\\underline{G}$ is a constant $k$-group if and only if $G$ is abelian, in which case $G=\\underline{G}$.", "revisions": [ { "version": "v1", "updated": "2008-04-25T17:33:02.000Z" } ], "analyses": { "subjects": [ "12F10" ], "keywords": [ "finite galois extension", "galois group", "subgroup scheme", "automorphism" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.4153R" } } }