{ "id": "0804.4030", "version": "v1", "published": "2008-04-25T01:18:59.000Z", "updated": "2008-04-25T01:18:59.000Z", "title": "Infinitely many solution for prescribed curvature problem on $S^N$", "authors": [ "Juncheng Wei", "Shusen Yan" ], "comment": "40 pages", "journal": "Journal of Functional Analysis 258(2010)", "categories": [ "math.AP" ], "abstract": "We consider the following prescribed scalar curvature problem on $ S^N$ (*)$$\\left\\{\\begin{array}{l} - \\Delta_{S^N} u + \\frac{N(N-2)}{2} u = \\tilde{K} u^{\\frac{N+2}{N-2}} {on} S^N, u >0 \\end{array}\\right. $$ where $ \\tilde{K}$ is positive and rotationally symmetric. We show that if $\\tilde{K}$ has a local maximum point between the poles then equation (*) has {\\bf infinitely many non-radial positive} solutions, whose energy can be made arbitrarily large.", "revisions": [ { "version": "v1", "updated": "2008-04-25T01:18:59.000Z" } ], "analyses": { "subjects": [ "35B20" ], "keywords": [ "prescribed curvature problem", "prescribed scalar curvature problem", "local maximum point", "non-radial" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.4030W" } } }