{ "id": "0804.3928", "version": "v1", "published": "2008-04-24T13:53:34.000Z", "updated": "2008-04-24T13:53:34.000Z", "title": "On the global boundedness of Fourier integral operators", "authors": [ "Elena Cordero", "Fabio Nicola", "Luigi Rodino" ], "comment": "30 pages", "categories": [ "math.FA", "math.AP" ], "abstract": "We consider a class of Fourier integral operators, globally defined on $\\mathbb{R}^{d}$, with symbols and phases satisfying product type estimates (the so-called $SG$ or scattering classes). We prove a sharp continuity result for such operators when acting on the modulation spaces $M^p$. The minimal loss of derivatives is shown to be $d|1/2-1/p|$. This global perspective produces a loss of decay as well, given by the same order. Strictly related, striking examples of unboundedness on $L^p$ spaces are presented.", "revisions": [ { "version": "v1", "updated": "2008-04-24T13:53:34.000Z" } ], "analyses": { "subjects": [ "35S30", "47G30", "42C15" ], "keywords": [ "fourier integral operators", "global boundedness", "phases satisfying product type estimates", "sharp continuity result", "global perspective produces" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.3928C" } } }