{ "id": "0804.3036", "version": "v1", "published": "2008-04-18T15:11:16.000Z", "updated": "2008-04-18T15:11:16.000Z", "title": "Distance graphs in vector spaces over finite fields, coloring and pseudo-randomness", "authors": [ "Derrick Hart", "Alex Iosevich", "Doowon Koh", "Steve Senger", "Ignacio Uriarte-Tuero" ], "categories": [ "math.CO" ], "abstract": "In this paper we systematically study various properties of the distance graph in ${\\Bbb F}_q^d$, the $d$-dimensional vector space over the finite field ${\\Bbb F}_q$ with $q$ elements. In the process we compute the diameter of distance graphs and show that sufficiently large subsets of $d$-dimensional vector spaces over finite fields contain every possible finite configurations.", "revisions": [ { "version": "v1", "updated": "2008-04-18T15:11:16.000Z" } ], "analyses": { "keywords": [ "distance graph", "dimensional vector space", "pseudo-randomness", "finite fields contain", "sufficiently large subsets" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.3036H" } } }