{ "id": "0804.2378", "version": "v1", "published": "2008-04-15T13:12:27.000Z", "updated": "2008-04-15T13:12:27.000Z", "title": "Almost-sure Growth Rate of Generalized Random Fibonacci sequences", "authors": [ "Elise Janvresse", "BenoƮt Rittaud", "Thierry De La Rue" ], "journal": "Annales de l'IHP - Probabilit\\'es et Statistiques 46, 1 (2010) 135-158", "doi": "10.1214/09-AIHP312", "categories": [ "math.PR" ], "abstract": "We study the generalized random Fibonacci sequences defined by their first nonnegative terms and for $n\\ge 1$, $F_{n+2} = \\lambda F_{n+1} \\pm F_{n}$ (linear case) and $\\widetilde F_{n+2} = |\\lambda \\widetilde F_{n+1} \\pm \\widetilde F_{n}|$ (non-linear case), where each $\\pm$ sign is independent and either $+$ with probability $p$ or $-$ with probability $1-p$ ($0