{ "id": "0804.2334", "version": "v1", "published": "2008-04-15T18:38:23.000Z", "updated": "2008-04-15T18:38:23.000Z", "title": "Multifractality at the quantum Hall transition: Beyond the parabolic paradigm", "authors": [ "F. Evers", "A. Mildenberger", "A. D. Mirlin" ], "comment": "4 pages, 4 figures", "journal": "Phys. Rev. Lett. 101, 116803 (2008)", "doi": "10.1103/PhysRevLett.101.116803", "categories": [ "cond-mat.mes-hall", "cond-mat.dis-nn" ], "abstract": "We present an ultra-high-precision numerical study of the spectrum of multifractal exponents $\\Delta_q$ characterizing anomalous scaling of wave function moments $<|\\psi|^{2q}>$ at the quantum Hall transition. The result reads $\\Delta_q = 2q(1-q)[b_0 + b_1(q-1/2)^2 + ...]$, with $b_0 = 0.1291\\pm 0.0002$ and $b_1 = 0.0029\\pm 0.0003$. The central finding is that the spectrum is not exactly parabolic, $b_1\\ne 0$. This rules out a class of theories of Wess-Zumino-Witten type proposed recently as possible conformal field theories of the quantum Hall critical point.", "revisions": [ { "version": "v1", "updated": "2008-04-15T18:38:23.000Z" } ], "analyses": { "subjects": [ "73.43.-f", "05.45.Df", "71.30.+h", "72.15.Rn" ], "keywords": [ "quantum hall transition", "parabolic paradigm", "multifractality", "quantum hall critical point", "conformal field theories" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review Letters", "year": 2008, "month": "Sep", "volume": 101, "number": 11, "pages": 116803 }, "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008PhRvL.101k6803E" } } }