{ "id": "0804.2075", "version": "v1", "published": "2008-04-14T14:25:57.000Z", "updated": "2008-04-14T14:25:57.000Z", "title": "Kreps-Yan theorem for Banach ideal spaces", "authors": [ "Dmitry B. Rokhlin" ], "comment": "6 pages", "categories": [ "math.FA" ], "abstract": "Let $C$ be a closed convex cone in a Banach ideal space $X$ on a measurable space with a $\\sigma$-finite measure. We prove that conditions $C\\cap X_+=\\{0\\}$ and $C\\supset -X_+$ imply the existence of a strictly positive continuous functional on $X$, whose restriction to $C$ is non-positive.", "revisions": [ { "version": "v1", "updated": "2008-04-14T14:25:57.000Z" } ], "analyses": { "subjects": [ "46E30", "46B42" ], "keywords": [ "banach ideal space", "kreps-yan theorem", "closed convex cone", "finite measure", "restriction" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.2075R" } } }