{ "id": "0804.1999", "version": "v1", "published": "2008-04-12T07:36:35.000Z", "updated": "2008-04-12T07:36:35.000Z", "title": "Intersection of subgroups in free groups and homotopy groups", "authors": [ "Hans-Joachim Baues", "Roman Mikhailov" ], "journal": "Internat. J. Algebra Comput, 18 (2008), 803-823", "categories": [ "math.GR", "math.AT" ], "abstract": "We show that the intersection of three subgroups in a free group is related to the computation of the third homotopy group $\\pi_3$. This generalizes a result of Gutierrez-Ratcliffe who relate the intersection of two subgroups with the computation of $\\pi_2$. Let $K$ be a two-dimensional CW-complex with subcomplexes $K_1,K_2,K_3$ such that $K=K_1\\cup K_2\\cup K_3$ and $K_1\\cap K_2\\cap K_3$ is the 1-skeleton $K^1$ of $K$. We construct a natural homomorphism of $\\pi_1(K)$-modules $$ \\pi_3(K)\\to \\frac{R_1\\cap R_2\\cap R_3}{[R_1,R_2\\cap R_3][R_2,R_3\\cap R_1][R_3,R_1\\cap R_2]}, $$ where $R_i=ker\\{\\pi_1(K^1)\\to \\pi_1(K_i)\\}, i=1,2,3$ and the action of $\\pi_1(K)=F/R_1R_2R_3$ on the right hand abelian group is defined via conjugation in $F$. In certain cases, the defined map is an isomorphism. Finally, we discuss certain applications of the above map to group homology.", "revisions": [ { "version": "v1", "updated": "2008-04-12T07:36:35.000Z" } ], "analyses": { "keywords": [ "free group", "intersection", "right hand abelian group", "third homotopy group", "group homology" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.1999B" } } }