{ "id": "0804.1949", "version": "v1", "published": "2008-04-11T19:30:19.000Z", "updated": "2008-04-11T19:30:19.000Z", "title": "The $(L^{1},L^{1})$ bilinear Hardy-Littlewood function and Furstenberg averages", "authors": [ "Idris Assani", "Zoltan Buczolich" ], "categories": [ "math.DS", "math.CA" ], "abstract": "Let $(X,\\mathcal{B}, \\mu, T)$ be an ergodic dynamical system on a non-atomic finite measure space. Consider the maximal function $\\dis R^*:(f, g) \\in L^1\\times L^1 \\to R^*(f, g)(x) = \\sup_{n} \\frac{f(T^nx)g(T^{2n}x)}{n}.$ We show that there exist $f$ and $g$ such that $R^*(f, g)(x)$ is not finite almost everywhere. Two consequences are derived. The bilinear Hardy--Littlewood maximal function fails to be a.e. finite for all functions $(f, g)\\in L^1\\times L^1.$ The Furstenberg averages do not converge for all pairs of $(L^{1},L^{1})$ functions, while by a result of J. Bourgain these averages converge for all pairs of $(L^{p},L^{q})$ functions with $\\frac{1}{p}+\\frac{1}{q}\\leq 1.$", "revisions": [ { "version": "v1", "updated": "2008-04-11T19:30:19.000Z" } ], "analyses": { "subjects": [ "37A05", "37A50", "28D05" ], "keywords": [ "bilinear hardy-littlewood function", "furstenberg averages", "bilinear hardy-littlewood maximal function fails", "non-atomic finite measure space", "ergodic dynamical system" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.1949A" } } }