{ "id": "0804.1942", "version": "v2", "published": "2008-04-11T17:37:32.000Z", "updated": "2009-02-09T11:21:36.000Z", "title": "On some crystalline representations of $GL_2(Q_p)$", "authors": [ "Vytautas Paskunas" ], "comment": "12 pages", "categories": [ "math.RT", "math.NT" ], "abstract": "We show that the universal unitary completion of certain locally algebraic representation of $G:=\\GL_2(\\Qp)$ with $p>2$ is non-zero, topologically irreducible, admissible and corresponds to a 2-dimensional crystalline representation with non-semisimple Frobenius via the $p$-adic Langlands correspondence for $G$.", "revisions": [ { "version": "v2", "updated": "2009-02-09T11:21:36.000Z" } ], "analyses": { "keywords": [ "crystalline representation", "universal unitary completion", "adic langlands correspondence", "locally algebraic representation", "non-semisimple frobenius" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.1942P" } } }