{ "id": "0804.1717", "version": "v2", "published": "2008-04-10T14:26:05.000Z", "updated": "2009-06-25T08:09:11.000Z", "title": "The Yamabe problem with singularities", "authors": [ "Farid Madani" ], "doi": "10.1016/j.bulsci.2007.09.004", "categories": [ "math.AP", "math.DG" ], "abstract": "Let $(M,g)$ be a compact Riemannian manifold of dimension $n\\geq 3$. Under some assumptions, we prove that there exists a positive function $\\varphi$ solution of the following Yamabe type equation \\Delta \\varphi+ h\\varphi= \\tilde h \\varphi^{\\frac{n+2}{n-2}} where $h\\in L^p(M)$, $p>n/2$ and $\\tilde h\\in \\mathbb R$. We give the regularity of $\\varphi$ with respect to the value of $p$. Finally, we consider the results in geometry when $g$ is a singular Riemannian metric and $h=\\frac{n-2}{4(n-1)}R_g$, where $R_g$ is the scalar curvature of $g$.", "revisions": [ { "version": "v2", "updated": "2009-06-25T08:09:11.000Z" } ], "analyses": { "subjects": [ "53C21", "35J10" ], "keywords": [ "yamabe problem", "singularities", "singular riemannian metric", "yamabe type equation", "compact riemannian manifold" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.1717M" } } }