{ "id": "0804.1695", "version": "v2", "published": "2008-04-10T13:10:39.000Z", "updated": "2008-06-03T11:48:50.000Z", "title": "Sub-Riemannian geodesics on the 3-D sphere", "authors": [ "Der-Chen Chang", "Irina Markina", "Alexander Vasil'ev" ], "comment": "13 pages, 1 figure", "categories": [ "math.DG" ], "abstract": "The unit sphere $\\mathbb S^3$ can be identified with the unitary group SU(2). Under this identification the unit sphere can be considered as a non-commutative Lie group. The commutation relations for the vector fields of the corresponding Lie algebra define a 2-step sub-Riemannian manifold. We study sub-Riemannian geodesics on this sub-Riemannian manifold making use of the Hamiltonian formalism and solving the corresponding Hamiltonian system.", "revisions": [ { "version": "v2", "updated": "2008-06-03T11:48:50.000Z" } ], "analyses": { "subjects": [ "53C17", "70H05" ], "keywords": [ "unit sphere", "sub-riemannian manifold", "unitary group su", "corresponding lie algebra define", "study sub-riemannian geodesics" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2008arXiv0804.1695C" } } }